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1 What is Entanglement Learning? 
Adaptability in AI systems hinges on their ability to identify performance deviations, which requires 
comparing actual and expected performance values [6]. Current AI systems rely on designers to provide 
the expected or reference value, necessitating human intervention when decisions, predictions, or tasks 
deviate from expectations [27, 25]. This dependency limits AI systems' capacity for self-reflection and 
autonomous gap quantification [26]. Entanglement Learning (EL) addresses this limitation by providing 
AI systems with an intrinsic reference, their entanglement with their environment [12], enabling them to 
quantify performance gaps due to changes and generate control signals to adjust their performance 
without external intervention. This self-reflective capability enhances AI systems' adaptability and 
autonomy in dynamic environments. 

2 The Technical Solu8on 
Entanglement Learning (EL), a framework designed to enhance the learning, adaptability, and autonomy 
of Reinforcement Learning (RL) agents, with an initial focus on model-based RL. A model-based RL agent 
learns to predict state transitions and rewards from state-action-next state sequences, creating a 
dynamic model of the environment based on its actions [32]. The agent uses this internal model to plan 
and continually optimize its policy, which maps states to actions to maximize cumulative rewards over 
time and effectively achieve its objectives [21]. The core research hypothesis of EL is that entanglement, 
an information-theoretic metric that captures the degree of mutual predictability between events [12], 
directly correlates to the degree of alignment between an agent's objectives and its environment.  

That is, the greater the entanglement within the state-action-next state process, the higher the 
predictability and control the agent has over its actions and environment. This increased control 
indicates the agent's potential and ability to achieve its objectives and maintain adaptability and 
resilience in dynamic environments. Accordingly, maintaining and increasing higher levels of 
entanglement would enable higher performance, adaptability, and resilience.  

To achieve this adaptability and resilience, the proposed technical solution introduces an additional 
learning layer to existing RL agents, the “EL Framework” (Figure 1). The EL framework consists of two 
main components: the Sematic Matrix (SMX) and the Entanglement Controller (EC). The Semantic 
Matrix (SMX) is primed by capturing the conditional probabilities of state-action-next state as learned 
from historical records and later as observed during the agent-environment interaction. The SMX 
provides various entanglement metrics related to state-action pairs distributions and changes over time. 
The second main component is the Entanglement Controller (EC) then relies on the provided 
entanglement metrics (in bits) and the agent objectives to generate adaptive control signals in real time. 
The control signals are integrated with the RL algorithm to modulate its hyperparameters, reward 
function, Bellman equation, and ultimately its policy.  

The Sematic Matrix (SMX) main product is the Information Genome (InfoGen), which is a structured, 
task- and environment-specific representation of the learned information patterns and predictability 
between an agent's actions and the states of its environment for a specific task. It encapsulates the 
domain-specific information measures—or entanglements—that the agent has learned through its 
interactions towards a specific task. Serving as a guiding blueprint, the InfoGen provides the agent with 
baseline estimates of probable actions in response to observed states and anticipated state changes 
following specific actions.  
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Figure 1. Entanglement Learning Architecture Overview 

The agent can then rely on the InfoGen to simulate possible state-action-next state entanglement values 
and relies on the outcomes to adjust its actions towards higher entanglement. In addition, the InfoGen is 
transferable across agents, or multiple such genomes can be integrated to expand an agent’s task scope 
within a specific domain. 

3 Entanglement Learning Main Algorithm 
The following pseudo EL algorithm not only outlines the operational steps of an EL-based agent, but also 
reflects the research approach to develop and validate the EL Framework:  

  Steps 
1 Initialization: Load the Information Genome (InfoGen) with historical data or data from the end of 

the learning phase. 
2 State Observation: The agent observes the current state from the environment. 

3 Action Selection: The agent's policy suggests an action based on the observed state. 

4 Expected EL Calculation: Retrieve expected next states and their entanglement values from 
InfoGen for the recommended action. 

5 Action Execution: The agent executes the recommended action. 

6 Action Update: Adjust action selection towards higher entanglement by incorporating feedback 
from InfoGen. 

7 State Transition and Entanglement Evaluation: Observe the actual next state and calculate the 
change in entanglement and asymmetry from InfoGen. 

8 Next State Analysis: InfoGen provides possible subsequent actions and their entanglement values 
for the observed next state. 

9 Entanglement Optimization: Choose the next action to compensate for the entanglement change, 
either increasing overall entanglement or restoring asymmetry. 

10 RL Agent Update: Update the policy and/or environment model based on entanglement changes 
to improve decision-making. 
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11 InfoGen Update: Update the InfoGen entropies based on actual states and actions. 

12 Repeat: The cycle repeats with the new state and selected action, continually adjusting based on 
new data and entanglement metrics. 

Table 1. Entanglement Learning Pseudo Algorithm. 

By providing a principled, agent-intrinsic, and data-driven approach to adaptability, EL has the potential 
to revolutionize the field of RL and autonomous systems in general. The proposed technical solution is 
grounded in information theory [29,3], RL methodologies [22], meta-learning concepts [15], and 
adaptive algorithms [20]. It also leverages the latest advancements in machine learning, particularly in 
the areas of automated learning process control [13], and dynamic system adaptation [1].  

4 State of the Art and Challenges in Reinforcement Learning (RL) 
Reinforcement Learning (RL) has emerged as a powerful framework for enabling agents to learn and 
make decisions in complex environments. RL agents learn through interaction with their environment, 
receiving rewards or penalties for their actions, and updating their policies to maximize cumulative 
rewards over time [32]. This approach has achieved remarkable successes in various domains, including 
game playing [31], robotics [19], and autonomous systems [18]. 

The challenges faced by reinforcement learning (RL) algorithms can be largely attributed to the 
uncertainties and complexities in learning the state-action-next state relationships. At the core of RL is 
the goal of learning optimal policies that map states to actions, maximizing cumulative rewards [4]. 
However, managing the uncertainties associated with the state-action-next state transitions pose 
significant challenges. First, the stochasticity and partial observability of the environment introduce 
uncertainties in predicting the next state given a current state and action [5]. Second, the curse of 
dimensionality, where the state and action spaces grow exponentially, makes it challenging to learn and 
represent the full state-action-next state relationships [2]. Furthermore, the non-stationarity of the 
environment, where the underlying dynamics may change over time, adds another layer of uncertainty 
in estimating the long-term consequences of actions [23]. These uncertainties, and the very nature of RL 
in learning through interactions, make it challenging for RL agents to learn accurate models of the 
environment with limited data sets, generalize to unseen states, and adapt to changing conditions. 
Addressing these uncertainties and learning reliable state-action-next state relationships is crucial for 
developing robust and efficient RL algorithms that can tackle real-world problems [17]. 

5 Entanglement Learning (EL) Overview 
Entanglement Learning (EL) introduces a novel perspective on addressing the challenges and 
uncertainties in reinforcement learning (RL) by drawing inspiration from communication theory. EL 
views the state-action-next state process performed by an agent as it interacts with its environment as a 
communication process between a source (set of agent’s available actions) and a destination (set of 
environment’s observed states) [9,11], (Figure 2).  
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Figure 2. Agent-Environment interacKon as a process of communicaKon between the agent defined by its 
acKons, and the environment, defined by the various task states. 

However, and unlike communication theory, which assumes symmetric exchanges between a source 
and destination using the same signals along a shared channel [29,3]. EL posits that communication in 
agent-environment interactions is inherently asymmetric, as the state-action-next state exchanges occur 
through two distinct channels: the state-action within the agent "channel" and the action-next state 
through the environment "channel", which results in two sources of uncertainties instead of one. By 
considering the two uncertainties in the state-action-next state relationships, EL leverages information-
theoretic concepts to quantify and manage these uncertainties [10,12].  

Central—and novel—to EL is capturing the two uncertainties, which are tightly corelated, as one 
concept: entanglement [12]. Agent-environment entanglement is thus provided by calculating the 
agent-environment mutual information over the complete interaction cycle. Accordingly, we define 
entanglement as the mutual information between the observed state-selected agent action and the 
resulting next observed state. Agent-environment entanglement, or information, thus provides the 
level of mutual predictability along the states-actions-next states process.  

6 Entanglement Learning Research Hypothesis  
In traditional reinforcement learning (RL), the reward function serves as the independent variable, 
defining the criteria for successful behavior by providing immediate feedback to the agent based on its 
actions. The reward function is set by the task designer and influences the behavior and learning 
trajectory of the agent [30]. The dependent variable in RL is the agent's performance with respect to the 
use case objectives, which can be measured in various ways, such as efficiency, accuracy, or success rate 
in achieving the defined goals [14]. The agent's performance is directly influenced by how it responds to 
the reward function [16]. 

The core hypothesis of Entanglement Learning (EL) asserts that enhancing the bidirectional 
predictability—quantified as mutual information or entanglement—between an agent and its 
environment boosts performance metrics such as learning speed, adaptability, reliability, and 
transparency. By measuring and actively managing this entanglement, EL aims to demonstrate superior, 
sustainable performance and knowledge transfer compared to traditional methods focused on static 
rewards and exploratory behaviors.  
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7 Quan8fying Agent-Environment Interac8on Uncertain8es using Informa8on 
Theory  

In order to calculate the two components of the entanglement: MIa(A;S) the state-action mutual 
information (the lower case “a” indicates that this information is related to the agent as a channel,) and 
MIv(S’;A) the action-next state mutual information (the lower case “v” indicates that this information is 
related to the environment channel,) we consider the set of all actions available to the agent (A) and the 
set of all observable states by the agent (S) (Figure 3).  

Figure 3. Agent-Environment interacKon uncertainKes and mutual informaKon. The use of “S’” is merely to 
indicate the next state.  

According to communication theory, we then have the following quantities to calculate the involved 
mutual information in along the agent-environment interactions:  

§ H(A) is the acMons’ entropy, the uncertainty about the agent acMons. The number of bits the agent 
requires to select an acMon out of the set of acMons. That is, if the acMons’ entropy = 4 bits, and assuming 
equally distributed acMons, then the agent has 16 acMons to choose from.  

§ H(S) is the states’ entropy; the agent’s uncertainty about the observed states, the number of bits it 
requires to idenMfy a state from the set of observable states.  

§ Ha(A|S) is the uncertainty about selecMng an acMon “A”, given an observed state “S”. It is the number of 
bits required to select an acMon knowing a state. The lower the value, the higher the predictability of the 
acMon, the higher, the less predictable is the acMon. The “a” indicates this uncertainty is associated with 
the agent “channel”.  

§ Hv(S’|A) is the uncertainty about the resulMng next state “S”, given acMon “A”. It is the number of bits 
required to predict a state aXer the agent takes an acMon A. The lower, the higher the predictability of the 
next state, the higher, the less the predictability of which state might result when taking acMon A. The “v” 
indicates that this value is associated with the environment “channel”.  

§ MIa (A;S), is the state-acMons mutual informaMon. It captures the interdependence between the 
environment's states and the agent's chosen acMons. It is the number of bits shared between the acMons 
and the states, the higher, the higher the predictability of an acMon given a state. According to 
communicaMon theory, the agent “channel” mutual informaMon is given by: 

MIa(A;S) = H(A) – H(A|S) 

§ MIv (S’;A), is the acMons-states mutual informaMon. It captures the interdependence between the agent's 
acMons and the resulMng state of the environment. It is the number of bits shared between the states and 
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the acMons, the higher, the higher the predictability of a state given an acMon. In a determinisMc 
environment, this value is at maximum. The mutual environment channel mutual informaMon is calculated 
based on the environment channel related entropies:  

MIv(S’;A) = H(S’) – H(S’|A) 

8 Entanglement Metrics 
The entanglement metrics introduced in EL, such as entanglement strength (ψ), differential 
entanglement (Δψ), and entanglement asymmetry (Λψ), are fundamentally new and grounded in a 
novel definition of information as a measure of entanglement. This innovative perspective on 
information theory sets EL apart from traditional approaches and enables a deeper understanding of the 
complex dynamics between agents and their environments [8]. 

8.1 Entanglement (ψ, psi):  

We define entanglement here as the mutual predictability between the agent and the environment 
along the closed-loop communication cycle between the two, or in Reinforcement learning notation, 
along the state-action-next state process. Given the states-actions and actions-states mutual 
information, we define entanglement as: 

ψ = MI (S,A;S’) 

That is, entanglement, in bits, equals the mutual information between a state-action pair and the 
resulting next state. It indicates the predictability, and interdependence, between the agent and the 
environment. It quantifies the degree of overall mutual dependency between the agent and its 
environment.  

8.2 DifferenUal Entanglement (Δψ, delta psi) 

Δψ = ψ(t) – ψ(t-1) 

§ ψ(t) represents the entanglement metric value at the current Mme step t. 
§ ψ(t-1) represents the entanglement metric value at the previous Mme step t-1. 

The differential entanglement Δψ quantifies the change in entanglement between consecutive time 
steps. It measures how the mutual predictability and coupling between the agent's actions and the 
environment's states evolve over time. According to this definition, the value of Δψ can provide the 
following insights about the agent-environment interactions:  

Positive Δψ (Δψ > 0): A positive value of Δψ indicates an increase in entanglement from the previous 
time step to the current time step. This suggests that the mutual predictability and coupling between 
the agent's actions and the environment's states have strengthened. It implies that the agent's actions 
have become more informative about the environment's states, or the environment's states have 
become more predictable based on the agent's actions, compared to the previous time step. A 
consistently positive Δψ over time indicates a trend of increasing entanglement, suggesting that the 
agent is learning and adapting to the environment effectively. 

Negative Δψ (Δψ < 0): A negative value of Δψ indicates a decrease in entanglement from the previous 
time step to the current time step. This suggests that the mutual predictability and coupling between 
the agent's actions and the environment's states have weakened. It implies that the agent's actions have 
become less informative about the environment's states, or the environment's states have become less 
predictable through the agent's actions, compared to the previous time step. A consistently negative Δψ 
over time indicates a trend of decreasing entanglement, suggesting that the agent may be struggling to 
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learn, adapt to, or predict its environment effectively. 

Zero Δψ (Δψ = 0): A zero value of Δψ indicates no change in entanglement from the previous time step 
to the current time step. This suggests that the mutual predictability between the agent's actions and 
the environment's states have remained stable. It implies that the agent's learning and adaptation to 
the environment have reached a steady state, or the environment's dynamics have not significantly 
changed. 

Δψ Magnitude: The magnitude of Δψ reflects the extent of the change in entanglement. Larger values 
of Δψ indicate more significant changes in the mutual predictability and coupling between the agent's 
actions and the environment's states. By monitoring the values of Δψ over time, we can gain insights 
into the dynamics of the agent's learning and adaptation process. Consistently positive Δψ values 
suggest effective learning and increasing entanglement, while consistently negative Δψ values may 
indicate challenges in learning or a need for adjustments in the agent's strategy. Fluctuations in Δψ can 
reveal patterns of exploration and exploitation, as well as the agent's responsiveness to changes in the 
environment. The differential entanglement Δψ provides a valuable metric for assessing the progress 
and quality of the agent's learning and adaptation in the context of Entanglement Learning. It offers a 
dynamic perspective on how the entanglement between the agent and the environment evolves over 
time, regardless of its rewards, thus enabling insights into the effectiveness of the learning process and 
potential areas for improvement. 

8.3 Entanglement Asymmetry (Λψ, lambda psi) 

Λψ = MIa(A;S) – MIv(S’;A) 

Entanglement asymmetry Λψ measures the imbalance or directionality in the mutual predictability and 
coupling between the agent's actions and the environment's states. It quantifies the extent to which one 
direction of influence dominates the other. Similar to the differential entanglement, the value of Λψ can 
provide different insights about the agent-environment interactions uncertainty and dynamics:  

Positive Λψ (Λψ > 0): A positive value of Λψ indicates that the mutual information of the agent's actions 
given the environment's states (MIa) is greater than the mutual information of the environment's states 
given the agent's actions (MIv). This suggests that the agent's actions are more predictable and 
influenced by the environment's states than vice versa. It implies that the agent has a stronger 
understanding of how the environment's states affect its actions, i.e., which action is to select for which 
state, allowing for more informed decision-making and indicating an effective policy. A consistently 
positive Λψ over time suggests that the agent is effectively utilizing the information from the 
environment's states to guide its actions. 

Negative Λψ (Λψ < 0): A negative value of Λψ indicates that the mutual information of the 
environment's states given the agent's actions (MIv) is greater than the mutual information of the 
agent's actions given the environment's states (Mia). This suggests that the environment's states are 
more predictable and influenced by the agent's actions than vice versa. It implies that the agent's 
actions have a stronger impact on shaping the environment's states, potentially indicating a higher level 
of control or influence over the environment, and an effective environment model. A consistently 
negative Λψ over time suggests that the agent is effectively shaping the environment's states through its 
actions.  

Zero Λψ (Λψ = 0): A zero value of ΔMI indicates perfect symmetry in the mutual predictability and 
coupling between the agent's actions and the environment's states. This suggests that the agent's 
actions and the environment's states are equally informative about each other, and there is no 
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dominant direction of influence. It implies a balanced and reciprocal relationship between the agent and 
the environment, where both entities have an equal impact on each other.  

Λψ Magnitude: The magnitude of Λψ reflects the extent of the asymmetry or imbalance in the 
entanglement between the agent and the environment. Larger absolute values of Λψ indicate a more 
significant dominance of one direction of influence over the other. 

Changes of Λψ values over time provide insights into the evolving dynamics, stability, and resilience of 
the agent-environment interaction. Consistently positive Λψ suggest that the agent is effectively 
leveraging the states to inform its actions, while consistently negative Λψ indicate that the agent's 
actions are significantly shaping the environment's states. Fluctuations in Λψ can reveal shifts in the 
balance of influence between the agent and its environment, potentially indicating changes in the 
agent's strategies or the environment's dynamics. A consistently growing Λψ can indicate a developing 
imbalance in the agent-environment predictability.  

8.4 Using the Entanglement Metrics to Control Agent Behavior  

The entanglement metrics and their evaluations are the key metrics that the agent has to capture and 
analyze for implementing steps 8 and 9 of the EL algorithm, as outlined in Table 1. 

For example, the entanglement metric, ψ, can be used to shape the agent's rewards, steering it towards 
actions that enhance entanglement with the environment. Incorporating ψ into the reward function 
focuses the agent on highly informative state-action pairs, accelerating learning by minimizing 
unnecessary exploration [7]. Differential entanglement, Δψ, can be used adjust the agent’s policy in 
response to changing entanglement dynamics; a positive Δψ encourages exploiting current strategies, 
while a negative Δψ prompts exploration of new tactics. This dynamic policy adaptation allows the agent 
to respond to evolving entanglement patterns and maintain a balance between exploration and 
exploitation [33]. Entanglement asymmetry, Λψ, can be used to update the agent’s model to better 
understand environmental dynamics or state-action values, depending on whether the agent’s actions 
or the environment's states dominate, thus ultimately improve its understanding of the environment 
[21]. 

Additionally, integrating entanglement metrics into the Bellman equation enhances RL algorithms by 
aligning value estimates and action selection with both expected rewards and the information-theoretic 
properties of agent-environment interactions. This methodological adaptation ensures that decisions 
not only aim for maximum rewards but also address the inherent uncertainties in the environment, 
fostering more effective learning and adaptation strategies. This comprehensive approach leverages ψ, 
Δψ, and Λψ to refine the agent’s operational framework, optimize performance, and maintain 
adaptability through informed exploratory and exploitative actions. 

9 Providing Entanglement Values Based on Historical Records  
To apply Entanglement Learning (EL) and define the task-specific Information Genome, InfoGen, we will 
identify and collect data from healthcare and finance domains, such as patient records [24] and financial 
time series [28]. The data will be preprocessed and binned to define discrete states and actions [5]. For 
healthcare, for example, states are represented by patient conditions, and actions represent treatments. 
In finance, states are market conditions, and actions are trading decisions. The actions and states data 
are represented as discrete features, i.e. binned into specific predefined discrete ranges, and captured 
into the Semantic Matrix (SMX) (Figure 1).  

The SMX is a central computational component of the Entanglement Learning framework that, based on 
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the distribution of the various features, calculates the conditional probabilities of state-action pairs 
observed during the agent-environment interaction and their associated entropies. The result is the 
task-specific Information Genome, or InfoGen. The SMX updates the InfoGen with each interaction and 
provides the various entanglement metrics: ψ, Δψ, Λψ (step 4 and 7 of the EL algorithm, Table 1). The 
InfoGen serves as a compact representation of the agent entire interaction history and accordingly 
enable the calculation of entanglement metrics and the discovery of patterns and dependencies in the 
agent's behavior to adjust the agent’s policy /environment model for effective learning and adaptation.  
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